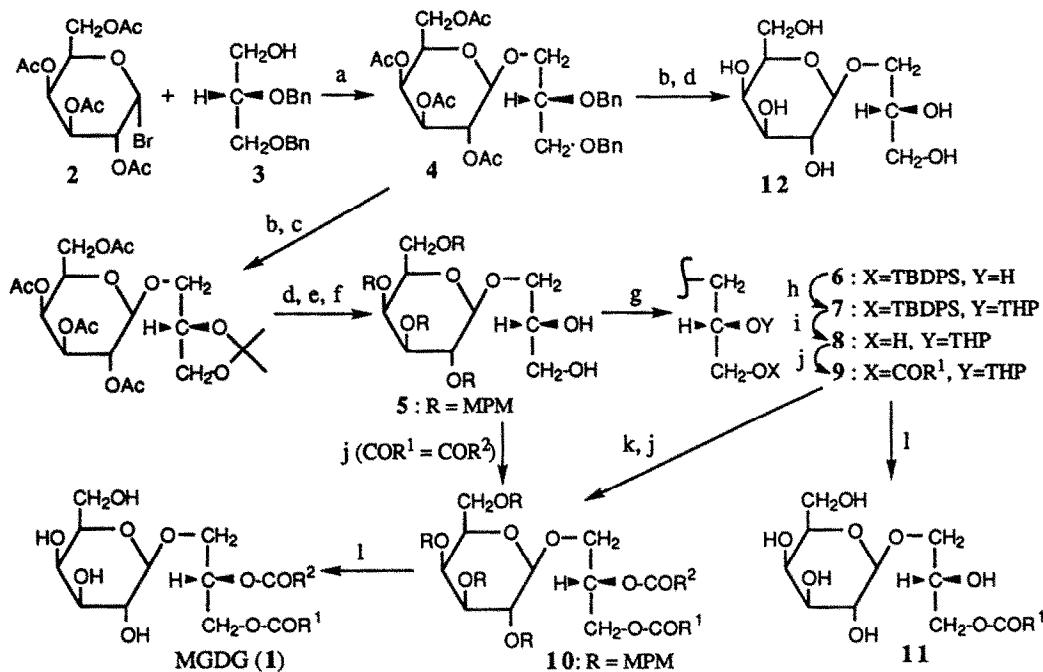


SYNTHESIS AND STRUCTURE - ANTI-TUMOR-PROMOTING ACTIVITY RELATIONSHIP OF MONOGALACTOSYL DIACYLGLYCEROLS

Akito Nagatsu,^a Miyako Watanabe,^a Kouji Ikemoto,^a Masayo Hashimoto,^a Nobutoshi Murakami,^{a,1}
Jinsaku Sakakibara,^{a,*} Harukuni Tokuda,^b Hoyoku Nishino,^{b,2} Akio Iwashima,^b and Kazunaga Yazawa.^c


^a Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan,

^b Department of Biochemistry, Kyoto Prefectural University of Medicine, Kawaramachi-hirokoji, Kamigyo-ku,
Kyoto 602, Japan, ^c Sagami Chemical Research Center, Nishi-onuma, Sagamihara, Kanagawa 229, Japan.

Abstract Monogalactosyl diacylglycerols (MGDG, 1a-t) were synthesized utilizing *p*-methoxybenzyl group for protection of hydroxyl groups at sugar moiety. Inhibitory activity of MGDG (1a-t) and related compounds on Epstein-Barr virus early antigen activation was evaluated as anti-tumor-promoting activity, and MGDG with oleoyl group (1c,h-j,p,s) showed strong activity.

Glyceroglycolipids are major constituents of the chloroplast membrane in the plant kingdom and attract much attention in recent years because of their biological activities. Monogalactosyl diacylglycerols (MGDG, 1), a class of glyceroglycolipids, were reported as antifouling substances,³ a *Dacus cucurbitae* attractant,⁴ and anti-inflammatory substances.⁵ On our course of the investigation of biologically active compounds from fresh-water microalgae, we have also isolated 8 MGDG as anti-tumor-promoting substances as well as 9 digalactosyl diacylglycerols (DGDG).⁶ Although some MGDG and DGDG were more potent than the others, no apparent relationship was observed between acyl pairs and the activity. Since it is difficult to get various MGDG as natural products, we attempted to synthesize MGDG with various acyl pairs to clarify the relationship. As saturated acyl groups of natural MGDG are mainly at *sn*-2 position and unsaturated ones are at *sn*-1 position in the case that they possess both types of acyl groups, we planned to prepare MGDG with saturated ones at *sn*-1 position and unsaturated ones at *sn*-2 position. We also planned to obtain MGDG with highly unsaturated acyl groups such as docosahexaenoyl and icosapentaenoyl groups which were supposed to prevent carcinogenesis.⁷ We now report synthesis of MGDG (1) with desired acyl groups at desired positions and elucidation of their anti-tumor-promoting activity.

The synthetic route to MGDG (1) is shown in Scheme. Several examples of MGDG synthesis were reported,⁸ and in most cases, the hydroxyl groups at sugar moiety were protected as acetyl or benzyl groups

Scheme : (a) HgO , $HgBr_2$, Drierite, CH_2CH_2Cl , r.t., 4 h; (b) H_2 , 10% Pd/C , $AcOEt-EtOH-AcOH$, 5 atm, r.t., 2 d; (c) $(MeO)_2Me_2$, *p*-toluenesulfonic acid (TsOH), DMF, r.t., 1.5 h; (d) $MeONa$, $MeOH$, r.t., 10 min; (e) MPM-Cl, NaH , DMF, r.t., 5 h; (f) TsOH, $MeOH$, r.t., 2 h; (g) $TBDPS-Cl$, pyridine, r.t., 4 h; (h) dihydropyran, pyridinium *p*-toluenesulfonate (PPTS), CH_2Cl_2 , r.t., 3 h; (i) n - Bu_4NF , THF, r.t., 5 h; (j) fatty acid, dicyclohexylcarbodiimide, dimethylaminopyridine, CH_2Cl_2 , r.t., 2 h; (k) PPTS, $MeOH$, r.t., 13 h; (l) CAN, $MeCN-H_2O$, r.t., 45 min

which were removed at the final steps under reductive conditions.^{8b-e} At the conditions, MGDG with highly unsaturated acyl groups were obtained only in low yield.⁹ Thus we used *p*-methoxybenzyl (MPM) group which can be easily cleaved under mild conditions. Dibenzyl-*sn*-glycerol (3) from D-mannitol^{8b,10} was reacted with 2¹¹ in the presence of HgO and $HgBr_2$ to give β anomer (4, 91%). After the benzyl groups of 4 were converted to an isopropylidene acetal group, the acetyl groups at sugar moiety were cleaved followed by protection of the resulting hydroxyl groups as MPM ethers.¹² Then the isopropylidene acetal group was removed to afford 5¹²(86% from 4). In order to introduce desired acyl groups at desired positions in good yield, the hydroxyl groups at *sn*-1 and -2 positions were protected individually as *t*-butyldiphenylsilyl (TBDPS) ether¹² and tetrahydropyranyl (THP) ether, respectively, to give 7¹²(84% from 5). The TBDPS ether was cleaved to 8¹² (98%), then acyl groups was incorporated at *sn*-1 position to give corresponding 9¹²(86-95%). After removal of the THP ether of 9, corresponding acyl groups were condensed at *sn*-2 position to afford 10^{12,13} (77-98%). Finally, the MPM ethers of 10 were removed by treatment with ceric ammonium nitrate (CAN), and MGDG

Table Inhibitory Activity of Synthetic MGDG (1a-t) and Related Compounds (11a-c and 12) on TPA-induced EBV-EA^a Activation

Compounds	Acyl group	sn-1 (COR ¹)	sn-2 (COR ²)	Concentration (mol ratio/TPA)			
				1000	500	100	10
				% to control	±S.E. ^b	(% viability)	
1a ^c)	myristoyl		acetyl	17.4±2.2 (>70)	36.8±2.5	52.9±3.8	77.4±3.0
1b ^c)	myristoyl		myristoyl (C14:0)	0 ±0.5 (>70)	15.4±1.9	88.2±2.0	100
1c ^c)	myristoyl		oleoyl (C18:1)	0 ±0 (>70)	16.9±1.8	80.4±4.4	100
1d ^c)	myristoyl		linoleoyl (C18:2)	17.1±5.0 (70)	39.6±4.4	88.2±1.0	100
1e ^c)	myristoyl		α-linolenoyl (C18:3)	0 ±0.3 (80)	20.2±4.6	73.9±1.1	100
1f ^c)	myristoyl		icosapentaenoyl (C20:5)	26.1±1.1 (>70)	52.8±3.6	84.1±1.8	100
1g ^c)	myristoyl		docosahexaenoyl (C22:6)	0 ±1.5 (>60)	64.7±4.2	88.3±2.0	100
1h	oleoyl		oleoyl	0 ±0 (70)	11.0±2.0	21.3±1.8	61.0±0.5
1i ^c)	oleoyl		icosapentaenoyl	0 ±0.3 (>70)	18.5±2.8	69.6±3.3	93.2±2.0
1j ^c)	oleoyl		docosahexaenoyl	0 ±0.6 (>70)	26.4±1.8	68.1±3.2	88.4±3.1
1k	linoleoyl		palmitoleoyl (C16:1)	53.3±4.2 (70)	74.6±1.5	100	100
1l	linoleoyl		linoleoyl	14.7±4.4 (70)	35.8±2.3	79.0±1.3	100
1m	α-linolenoyl		palmitoyl (C16:0)	19.4±3.9 (80)	57.6±3.0	92.6±0.1	100
1n ^c)	α-linolenoyl		linoleoyl	8.7±3.0 (70)	22.2±2.6	64.5±2.5	84.9±0.3
1o ^c)	icosapentaenoyl		myristoyl	15.8±2.9 (80)	30.6±1.9	72.8±2.8	90.7±0.6
1p ^c)	icosapentaenoyl		oleoyl	0 ±0 (>70)	0 ±0.5	53.6±3.9	81.7±3.5
1q ^c)	icosapentaenoyl		icosapentaenoyl	0 ±0.4 (80)	54.3±3.0	89.0±1.7	100
1r ^c)	docosahexaenoyl		myristoyl	13.8±2.2 (80)	29.7±2.9	68.9±2.6	100
1s ^c)	docosahexaenoyl		oleoyl	0 ±0.3 (>70)	12.8±3.0	62.9±4.2	83.2±2.7
1t ^c)	docosahexaenoyl		docosahexaenoyl	0 ±0 (80)	26.3±1.5	64.8±3.1	86.8±1.0
11a	myristoyl	H		0 ±0.6 (>70)	22.5±1.4	65.3±2.9	90.7±0.4
11b	oleoyl	H		0 ±0 (>70)	0 ±0.8	84.7±1.8	100
11c	linoleoyl	H		0 ±0.7 (>70)	24.1±2.0	79.8±3.5	100
12	H	H		0 ±0.2 (>70)	15.8±2.5	66.7±3.7	100

a) Epstein-Barr Virus Early Antigen. b) Standard error (n=3). c) New MGDG.¹²

with different acyl groups (1a,c-g,i-k,m-p,r-s) were obtained in moderate yield (26-42% from 3 for 13 steps). MGDG with the same acyl groups at *sn*-1 and -2 positions (1b,h,l,q,t) were obtained by acylation of 5 followed by cleavage of the MPM ethers. *Sn*-2 lyso derivatives (11a-c) were directly given from corresponding 9 by treatment with CAN. Galactosyl glycerol (12) was obtained by removal of the protective groups of 4.

The anti-tumor-promoting activities of the compounds were determined using a short-term *in vitro* assay of Epstein-Barr virus activation in Raji cells induced by 12-*O*-tetradecanoylphorbol-13-acetate (TPA) as described before.^{6,14} The activity of each compound is shown in Table. No samples exhibited cytotoxicity at the concentration of 1000 mol ratio / TPA. The synthetic MGDG with same acyl pair that we isolated from alga was checked its activity and indicated almost the same activity as the natural one. Considering of the activity of MGDG including natural ones at the 1000 mol ratio / TPA concentration,¹⁵ MGDG with a myristoyl group at *sn*-1 position (1a-g) were more potent than those at *sn*-2 position. Although MGDG with highly unsaturated acyl group including 1o and 1r, which have myristoyl group at *sn*-2 position, showed relatively strong effect.

MGDG with oleoyl group (**1c,h-j,p,s**) also completely inhibited EBV-EA activation at the concentration of 1000 mol ratio per TPA. It is noteworthy that galactosyl glycerol (**12**) indicated the anti-tumor-promoting activity as well as *sn*-2 lyso derivatives (**11**). This fact suggests that **12** is the principal structure for appearance of the activity of MGDG, and the strength of the activity should depend on the acyl groups. Although most MGDG were less potent than **12**, only MGDG with oleoyl group (**1c,h-j,p,s**) exhibited almost the same or stronger activity than **12**. Dioleoyl derivative (**1h**) was the most potent in the MGDG we tested.

In summary, we established sufficient synthetic route to MGDG (**1**) with desired acyl groups at desired positions by use of MPM ether for protection of the hydroxyl groups at the sugar moiety, and obtained 20 kinds of MGDG including 16 new ones. As the result of the evaluation of their anti-tumor-promoting activity, we clarified that oleoyl group contributed the most to the activity of MGDG among various acyl groups we tested, and dioleoyl derivative (**1h**) indicated the strongest activity.

Acknowledgments. We thank Ms. S. Kato, Ms. Nakano and Ms. Takahashi of this Faculty for ^1H NMR and FAB MS measurements. This work was supported in part by Grant-in-Aid for Scientific Research from Ministry of Education, Science, and Culture of Japan. We are also grateful to Toyo Igaku Kenkyu Foundation for financial support.

References and Notes

1. Present address: Kyoto Pharmaceutical University, Nakauchi-cho, Misasagi, Yamashina, Kyoto 607, Japan.
2. Present address: National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104, Japan
3. Katsuoka, M.; Ogura, C.; Etoh, H.; Sakata, K.; Ina, K. *Agric. Biol. Chem.*, **1990**, *54*, 3043.
4. Saito T.; Kato, N. *Jp. Patent* **62 26292**, *1987* [*Chem. Abstr.*, **1987**, *107*, 170613x].
5. Kikuchi, H.; Tsukitani, Y.; Manda, T.; Fujii, T.; Nakanishi, H.; Kobayashi, M.; Kitagawa, I. *Chem. Pharm. Bull.*, **1982**, *30*, 3544.
6. Shirahashi, H.; Murakami, N.; Watanabe, M.; Nagatsu, A.; Sakakibara, J.; Tokuda, H.; Nishino, H.; Iwashima, A. *Chem. Pharm. Bull.*, **1993**, *41*, 1664.
7. Takahashi, M.; Minamoto, T.; Yamashita, N.; Yazawa, K.; Sugimura, T.; Esumi, H. *Cancer Res.*, **1993**, *53*, 2786.
8. for example: a) Shibuya, H.; Kawashima, K.; Narita, N.; Kitagawa, I. *Chem. Pharm. Bull.*, **1992**, *40*, 1166. b) Mannock, D. A.; Lewis, R. N. A. H.; McElhaney, R. N. *Chem. Phys. Lipids*, **1987**, *43*, 113. c) Gent, P. A.; Gigg, R. *J. Chem. Soc., Perkin Trans. 1*, **1975**, 364. d) Shvets, V. I.; Bashkatova, A. I.; Evstigneeva, R. P. *Chem. Phys. Lipids*, **1973**, *10*, 267. e) Pomeranz Y.; Wehrli, H. P. *U. S. Patent 3729461*, **1973** [*Chem. Abstr.*, **1973**, *78*, 160068s]
9. Treatment of tetraacetylgalactosyl dilinoleoylglycerol with hydrazine gave **11** in only 31% yield, because linoleoyl groups were reduced to oleoyl group, other monounsaturated and/or saturated acyl groups, which were confirmed by GC of the methyl esters of acyl groups form the deacetylation reaction mixture.
10. a) Takano, S.; Ogasawara, K. *Yuki Gosei Kagaku Kyokaishi*, **1987**, *45*, 1987. b) van Boeckel, C. A. A.; Visser, G. M.; van Boom, J. H. *Tetrahedron*, **1985**, *41* 4557.
11. Fletcher, Jr., H. G. *Methods Carbohydr. Chem.*; Whistler, R. L.; and Wolfrom, M. L. Ed, Academic Press: New York, 1963; Vol. II, pp. 226.
12. All new compounds were characterized by ^1H NMR and FAB MS spectra.
13. Only acetyl group was introduced by treatment with Ac_2O and DMAP in pyridine for 2h at r.t..
14. a) Konoshima, T.; Takasaki, M.; Kozuka, M.; Tokuda, H. *J. Nat. Prod.*, **1987**, *50*, 1167; b) Ohigashi, H.; Takamura, H.; Koshimizu, K.; Tokuda, H.; Ito, Y. *Cancer Lett.*, **1986**, *30*, 143.
15. Inhibitory effects of the natural MGDG on TPA-induced EBV-EA activation at the concentration of 1000 mol ratio / TPA ⁶: (acyl group at *sn*-1 position / *sn*-2 position : % to control); palmitoyl / myristoyl : 58.7, palmitoleoyl : 56.3, oleoyl / myristoyl : 62.2, linoleoyl / myristoyl : 51.4, α -linolenoyl / myristoyl : 67.8, linoleoyl / palmitoyl : 69.4, α -linolenoyl / palmitoleoyl : 60.7, α -linolenoyl / α -linolenoyl : 87.7.

(Received in Japan 28 April 1994; accepted 24 May 1994)